
SAT/SMT solving in  
Haskell

Masahiro Sakai (酒井 政裕) 
Haskell Day 2016

2016-09-17

Self Introduction 
Masahiro Sakai

Twitter: @masahiro_sakai
github: https://github.com/msakai/
G+: https://plus.google.com/+MasahiroSakai

Translated “Software Abstractions”
and TaPL into Japanese with colleagues
Interests: Categorical Programming,
Theorem Proving / Decision Procedures,  
…

https://plus.google.com/+MasahiroSakai

Agenda
What are SAT and SMT?
Haskell libraries for SMT solving

sbv
toysat/toysmt

Conclusion

What are 
SAT and SMT?

What is SAT?
* SAT = Boolean SATisfiability problem

“Is there an assignment that makes given formula true?”
Examples:

(P∨Q)∧(P∨¬Q)∧(¬P∨¬Q) is satisfiable with  
{P ↦ True, Q ↦ False}
(P∨Q)∧(P∨¬Q)∧(¬P∨¬Q)∧(¬P∨Q) is unsatisfiable

SAT is NP complete, but state-of-the-art SAT-solver can
often solve problems with millions of variables /
constraints.

What is SMT?
Weakness of SAT: Really low-level representation

Encoding problems into SAT sometimes blows-up
SAT solver cannot leverage high-level knowledge

SMT = Satisfiability Modulo Theories
An approach to overcome the weakness of SAT
Problem Example: 
Is there array a, function f, integers i, j such that 
“0 ≤ i ∧ i < 10 ∧ (2i+1=j ∨ read(a,i)=0) ∧
f(read(write(a,i,3), j-2)) ≠ f(j-i+1)”?

SMT Solver Impl. 
SAT Solver + Theory solvers

SAT solver is responsible for Boolean reasoning
Theory solvers are responsible for handling specific functions/relations etc.

SAT
Solver

Arithmetic
Solver 
+, ×, ≤

BitVector
Solver

Uninterpre
ted Function 

Solver 
f, g , =

Array 
Solver 

read, write

 
・・・

Some Applications  
of SAT/SMT

Software/Hardware verification
Model checking, Test-case generation, …

Theorem proving
Puzzles: Sudoku, Numberlink, Nonogram, etc.
Type checking in Liquid Haskell

eg: doubles :: [{x : Int | x >= 0}]→[{x : Int | x `mod` 2 = 0}]

Program Synthesis
and more

Haskell libraries for
SMT solving

Some Haskell packages
for SMT

Binding
sbv, smtlib2, simple-smt
z3, bindings-yices, yices-easy, yices-painless

SMT solvers written in Haskell:
toysolver, Smooth

SMT-LIB2 file parser/printer
smt-lib, SmtLib

SMT-LIB2 is a standard 
input/output format

for SMT solvers

SBV: SMT Based
Verification in Haskell

SMT library developed by Levent Erkok
It provides:

High-Level DSL for specifying problems in
Haskell, and
Interfaces to multiple SMT solver
backends including Z3, CVC4, Yices,
Boolector.

You can install simply using stack/cabal
“stack install sbv” or “cabal install sbv"

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO SatResult
sendMoreMoney = sat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

SEND  
+MORE

———— 
MONEY

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO SatResult
sendMoreMoney = sat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

SMT problem is defined using Symbolic monad,
and SMT solving is performed by 

 sat :: Symbolic SBool → IO SatResult

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO SatResult
sendMoreMoney = sat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

 sInteger :: String → Symbolic SInteger 
creates integer variable

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO SatResult
sendMoreMoney = sat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

Comparison over symbolic values:
we have to use slightly difference operators like (.>=), (&&&).
Because Haskell’s (>=), (&&) returns Bool, but we want SBool.

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO SatResult
sendMoreMoney = sat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

val :: [SInteger] → SInteger is defined as in normal Haskell.
Thanks to the Num type class.

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO SatResult
sendMoreMoney = sat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

Actual constraints specification

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO SatResult
sendMoreMoney = sat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

Satisfiable. Model:
 s = 9 :: Integer
 e = 5 :: Integer
 n = 6 :: Integer
 d = 7 :: Integer
 m = 1 :: Integer
 o = 0 :: Integer
 r = 8 :: Integer
 y = 2 :: Integer

You need SMT solver Z3 
to run the code.

SBV Example: “send more money” 
Data.SBV.Examples.Puzzles.SendMoreMoney module

sendMoreMoney :: IO AllSatResult
sendMoreMoney = allSat $ do
 ds@[s,e,n,d,m,o,r,y] <- mapM sInteger ["s", "e", "n", "d", "m", "o", "r", "y"]
 let isDigit x = x .>= 0 &&& x .<= 9
 val xs = sum $ zipWith (*) (reverse xs) (iterate (*10) 1)
 send = val [s,e,n,d]
 more = val [m,o,r,e]
 money = val [m,o,n,e,y]
 constrain $ bAll isDigit ds
 constrain $ allDifferent ds
 constrain $ s ./= 0 &&& m ./= 0
 solve [send + more .== money]

By changing sat :: Symbolic SBool → IO SatResult with 
allSat :: Symbolic SBool → IO AllSatResult

SBV Summary
This is only one example and sbv includes
variety of examples. You should try!

toysolver package
I’m implementing some decision procedure in Haskell
to leaning the algorithms

https://github.com/msakai/toysolver

http://hackage.haskell.org/package/toysolver

It contains some algorithms/solvers.

In particular, it contains a SAT solver ‘toysat’ and
SMT solver ‘toysmt’

https://github.com/msakai/toysolver
http://hackage.haskell.org/package/toysolver

Recalling Last Year …
At Proof Summit 2015, 
I talked about how SAT/SMT 
solver works.

At that time, I already had implemented SAT
solver ‘toysat’, but not implemented SMT solver
yet.

It triggered my motivation to implement a SMT
solver, I worked hard, and finally I did it!

http://www.slideshare.net/sakai/satsmt

toysat / toysmt
Written in pure Haskell

but implemented in very imperative way
toysat is modestly fast.

It was once the fastest among SAT solvers
written in Haskell. But now mios by Shoji
Narazaki is faster.

toysmt is slow, and has very limited features.

toysmt
toysat based SMT solver

implementation is really native and not-
efficient at all

Theories
Equality and Uninterpreted functions ✓
Linear Real Arithmetic ✓
Bit-vector (currently implementing)
Linear Integer Arithmetic, Array, etc. (not yet)

toysmt: demonstration
(set-option :produce-models true)
(set-logic QF_UFLRA)
(declare-sort U 0)
(declare-fun x () Real)
(declare-fun f (U) Real)
(declare-fun P (U) Bool)
(declare-fun g (U) U)
(declare-fun c () U)
(declare-fun d () U)
(assert (= (P c) (= (g c) c)))
(assert (ite (P c) (> x (f d)) (< x (f d))))
(check-sat)
(get-model)
(exit)

QF_UFLRA.smt2 

toysmt: demonstration
$ toysmt QF_UFLRA.smt2  
success
…
sat
((define-fun P ((x!1 U)) Bool 
 (ite (= x!1 (as @3 U)) true false)) 
 (define-fun c () U (as @3 U)) 
 (define-fun d () U (as @4 U)) 
 (define-fun f ((x!1 U)) Real 
 (ite (= x!1 (as @4 U)) 0 (/ 555555 1)))  
 (define-fun g ((x!1 U)) U 
 (ite (= x!1 (as @3 U)) (as @3 U) (as @-1 U)))  
 (define-fun x () Real (/ 1 10)))

For those who do not
read SEXP

U = {@-1, @1, …, @4, …}
x = 1/10 : Real
c = @3 : U
d = @4 : U
P(x) = if x = @3 then true else false
f(x) = if x = @4 then 0 else 55555
g(x) = if x = @3 then @3 else @-1

toysmt in SMT-COMP 2016
QF_LRA (Main Track)

http://smtcomp.sourceforge.net/2016/results-QF_LRA.shtml?v=1467876482

‘toysmt’ ended up dead last. 
But without wrong results! (Thanks to QuickCheck!)

http://smtcomp.sourceforge.net/2016/results-QF_LRA.shtml?v=1467876482

toysmt: Future work
Fill the gap with state-of-the-art solvers (even a little)

There’re lots of rooms for performance improvement.

More theories: Bit-vectors, Integer arithmetic,
Array, …

More features: e.g. Proof-generation

Using ‘toysmt’ as a backend of ‘sbv'.

Re-challenge in next year's SMT-COMP competition.

Conclusion
SAT solvers are amazingly fast for solving many
combinatorial problems

SMT is an extension of SAT to handle high-level
constraints using specialized solvers.

sbv is a neat Haskell library for using SMT
solvers

toysmt is a SMT solver written in Haskell

Further readings

http://www.slideshare.net/sakai/satsmt
http://www.slideshare.net/sakai/

how-a-cdcl-sat-solver-works

http://www.slideshare.net/sakai/satsmt
http://www.slideshare.net/sakai/
http://www.apple.com/jp

Further readings
Handbook of Satisfiability

A. Biere, M. Heule, H. Van
Maaren, and T. Walsh, Eds.

IOS Press, Feb. 2009.

It is a very good book covering
variety of topics related to SAT/
SMT.

