
Introduction to Max-SAT
and Max-SAT evaluation

Masahiro Sakai
2014-02-27 @ ZIB Berlin

(slightly revised version)

Today’s topics

About Myself
SAT and related problem classes
My experience of Max-SAT evaluation 2013
Towards Max-SAT Evaluation 2014
Conclusion

About myself
Masahiro Sakai (酒井 政裕), from Japan

I’m NOT an expert of “MATHEMATICAL
PROGRAMMING” nor “OPERATIONS RESEARCH”
My background

Logic, Programming Language Theory (Domain
Theory, Type Theory, Functional Programming),
Category Theory, etc.

My job at TOSHIBA
Software Engineering

Model Checking, Specification Mining, etc.
Recommendation System

“Software Abstractions”

Japanese
translation

Textbook about
“Formal Methods”
and Alloy tool

“Types and Programming
Languages”

Japanese
translation

Textbook about “type systems”

About myself (cont’d)
My recent interests:

Decision procedures or Solver algorithms
Because of

my interests in logic
e.g. I’m impressed by decidability of Presburger
arithmetic and theory of real closed fields.

prevalent usage of SAT/SMT solvers in software
engineering (Alloy is one example)

Along the way, I also got interested in mathematical
programming.
I implemented several toy-level implementations of
these algorithms.

My hobby project “toysolver”/“toysat”:
toy-level implementations of

various algorithms

github.com/msakai/toysolver

Integer Arithmetic
Cooper’s Algorithm

Omega Test

Gomory’s Cut
Conti-Traverso

Branch-and-bound

Real Arithmetic
Fourier-Motzkin variable
elimination

Gröbner basis
(Buchberger algorithm)
Cylindrical Algebraic
Decomposition

Simplex method

Uninterpreted functions
Congruence Closure

SAT / MaxSAT / Pseudo
Boolean

SAT and
related problems

SAT

SAT = SATisfiability problem (of propositional logic)
“Given a propositional formula φ containing
propositional variables,
Is there a truth assignment M that makes the
formula true? (i.e. M ⊧ φ)”

SAT solver decides the SAT problem
When the formula is satisfiable,
it also produce one such truth assignment.

SAT: Examples
Example 1: (P∨Q) ∧ (P∨¬Q) ∧ (¬P∨¬Q)

→ “Satisfiable” (or “Feasible” in mathematical programming term)
Assignments: (P,Q) = (TRUE, FALSE))

Example 2: (P∨Q) ∧ (P∨¬Q) ∧ (¬P∨¬Q) ∧ (¬P∨Q)

→ “Unsatisfiable” (or “Infeasible” in mathematical programming term)

Note:
Input formula is usually given in CNF (conjunction normal form)

CNF ::= Clause ∧ … ∧ Clause
Clause ::= Literal ∨ … ∨ Literal
Literal ::= Variable | ¬Variable

Non-CNF formula can be converted to equi-satisfiable CNF in linear
size by introducing auxiliary variables. (“Tseitin encoding”, similar to
linearization of 0-1 integer programing)

Why SAT solvers attract
attentions?

SAT is a classical and canonical NP-complete problem.
But SAT solvers speed up drastically in last 15 years

State-of-art SAT solver can solve problems of millions
of variables and constraints.

Many applications in software engineering and other fields,
now encode their problems into SAT/SMT and use off-the-
shelf SAT/SMT solver.

to utilize the advances of off-the-shelf solvers
to separate two concerns:

problem formulation which requires domain knowledge
solving algorithms

SAT: Basic algorithm
Classical algorithm: DPLL (Davis-Putnam-Logemann-Loveland)
algorithm

Tree-search algorithm
Constraint propagation called unit propagation

All except one literals in a clause become false,
the remaining literal is assigned to true.

Modern improvements
CDCL (Conflict-driven clause learning)
Non-chronological backtracking
Efficient data-structure for constraint propagation
Adaptive variable selection heuristics
Restarts, Conflict Clause Minimization, Component caching, etc.

Related problems:
Max-SAT and Pseudo Boolean

Satisfaction/Optimization

Related Problems

SAT

PBS PBO
Integer
Program

ming

Max
SAT

SMT

QBF

Finite
Model
Finding

Automatic
Theorem
Proving

RCF
(Real Closed

Field)

propositional logic to
first-order logic

M
ore

Arithm
etical

more like optimization

“Theorem
Proving”
field

“Computer Algebra”
field

This is a rough overview.
Ignore detailed positions

“Mathematical
Programming”
field

Focus of this talk.

Max-SAT

Max-SAT is an optimization extension of SAT
“Given a set of clauses, find an assignment that
maximize satisfied clause.”

Unlike its name, it’s common to formulate as
minimization of VIOLATED clauses.
Example:

{¬P1∨¬P2, ¬P1∨P3, ¬P1∨¬P3, ¬P2∨P4, ¬P2∨¬P4, P1, P2}
→ (P1, P2, P3, P4)=(F, F, F, T) , 2 clauses are violated

Partial / Weighted
variants of Max-SAT

Partial Max-SAT:
HARD and SOFT clauses

Weighted Max-SAT:
each clause has associated cost
minimize the total costs of
violated clauses

Weighted Partial Max-SAT:
obvious combination of the two

x1 ∨ ¬x2 ∨ x4
¬x1 ∨ ¬x2 ∨ x3
[8] ¬x2 ∨ ¬x4
[4] ¬x3 ∨ x2
[3] x1 ∨ x3

Example of
Weighted Partial Max-SAT

Some Algorithms to solve
Max-SAT family

Convert to Pseudo Boolean Optimization (PBO) or
Integer Programming problems.

Branch-and-Bound

w/ modified version of unit-propagation

w/ specific lower bound computation
 (e.g. using disjoint inconsistent subsets)

Unsatisfiability-based (or core-guided) approach

Hybrids of those

Conversion to PBO (1)
Some SAT solvers are extended to handle more expressive
constraints than clauses

Clause
“L1 ∨ … ∨ Ln” ⇔ “L1 + … + Ln ≥ 1”

 if truth is identified with 1-0
Cardinality constraints

“at least k of {L1, …, Ln} is true” ⇔ “L1 + … + Ln ≥ k”

Pseudo boolean constraints
integer-coefficient polynomial inequality constraints
over literals
e.g. 2 L1 + 2 L2L3 + L4 ≥ 3

Conversion to PBO (2)

Pseudo boolean satisfaction (PBS)
satisfiability problems of pseudo-boolean
constraints

Pseudo boolean optimization (PBO)
PBS with objective function
≅ (non-linear) 0-1 integer programming

Conversion to PBO (3)
x1 ∨ ¬x2 ∨ x4

¬x1 ∨ ¬x2 ∨ x3

[8] ¬x2 ∨ ¬x4

[4] ¬x3 ∨ x2

[3] x1 ∨ x3
[2] x6

Minimize
 8 r3 + 4 r4 + 3 r5 + 2 ¬x6
Subject to
 x1 + ¬x2 + x4 ≥ 1

 ¬x1 + ¬x2 + x3 ≥ 1

 r3 + ¬x2 + ¬x4 ≥ 1

 r4 + ¬x3 + x2 ≥ 1

 r5 + x1 + x3 ≥ 1
• ris are relaxation variables for Soft clause.
• Unit clause (e.g. x6) does not need a relaxation variable.
• Further conversion to 0-1 ILP is obvious.

PBS/PBO algorithm
PBS

SAT solver is extended to handle pseudo-boolean
constraints

Sometimes “cutting-plane proof system” instead of
“resolution” is used for conflict analysis / learning.

PBO

Satisfiability-based approach

Branch-and-Bound

Unsatisfiability-based approach

PBO: Satisfiability-based
algorithm

 M ← None
 UB ← ∞
 while true
 if P is SAT
 M ← getAssignments()
 UB ← Σn

j=1 cj M(lj)
 P ← P ∧ (Σn

j=1 cj lj < UB)
 else
 return M and UB

Minimize Σn
j=1 cj lj

Subject to P
Many SAT solver allows
incrementally adding

constraints and re-solving.
(It is faster than solving
from scratch, since learnt
lemma and other info are

reused.)

This is linear search on
objective values, but binary

search and more
sophisticated search are

also used.

PBO: Branch-and-Bound

Various lower-bound computation methods are used.

LP relaxation

MIS (Maximum Independent Set) lower bounding

Lagrange relaxation

Note

LP relaxation is tighter, but more time-consuming.

Therefore, sometimes, more lax but cheeper
methods are preferred.

Unsatisfiability-based
Max-SAT algorithm

φW ← φ

while (φW is UNSAT)

 do Let φC be an unsatisfiable sub-formula of φW
 VR ← ∅

 for each soft clause ω ∈ φC

 do ωR ← ω ∪ { r }
 φW ← (φW \ { ω }) ∪ {ωR }
 VR ← VR ∪ { r }
 φR ← { Σ_{r∈VR} r ≤ 1 }
 φW ← φW ∪ φR // Clauses in φR are declared hard

return |φ| － number of relaxation variables assigned to 1

Treat all SOFT-clauses as HARD clauses, and invoke SAT solver.
If unsatisfiable, relax the unsatisfiable subset, and solve again.

First satisfiable result is the optimal solution.

Can be extended for
weighted version, but
omitted here for simplicity.

For detail, see “Improving
Unsatisfiability-based
Algorithms for Boolean
Optimization” by Vasco
Manquinho, Ruben Martins
and Inês Lynce.

Remark: Semidefinite
Optimization Approaches

SDP (Semi-definite programming) relaxation of Max-
SAT is known to be tighter than LP relaxation.

There are beautiful results on approximate
algorithms based on SDP relaxation

Still there are no practical Max-SAT solver that
incorporate SDP, AFAIK.

Max-SAT Evaluation
2013

Max-SAT evaluation

Max-SAT evaluation is the annual Max-SAT solver
competition

one of the solver competitions affiliated with SAT-
conference

 Why I submitted to Max-SAT 2013?

I submitted my “toysat” to the Pseudo Boolean
Competition 2012 (PB12) one year ago, and its
performance was not so bad in some categories,
considering it was not tuned up well.

I wanted to re-challenge, but it was the last PB
competition, so I moved to Max-SAT evaluation.

Results of PB12:
PBS/PBO track

DEC-SMALLINT-LIN

1st: SAT 4j PB RES // CP, …, 19th: SCIP spx standard, 20th: toysat
DEC-SMALLINT-NLC

1st: pb_cplex, 2nd: SCIP spx standard, …, 18th: toysat, …
DEC-BIGINT-LIN

1st: minisatp, …, 4th: SCIPspx, 16th: toysat, …
OPT-SMALLINT-LIN

1st: pb_cplex, 2nd: SCIP spx E, …, 24th: toysat, …
OPT-SMALLINT-NLC

1st: SCIP spx E, …, 27th: toysat, …
OPT-BIGINT-LIN

1st: SAT4J PB RES // CP, …, 8th: toysat, …

DEC: decision problem (PBS)
OPT: optimization problem (PBO)
SMALLINT: all coefficients are ≤220
BIGINT: some coefficients are >220

LIN: linear constraints/objective
NLC: non-linear …

Results of PB12:
WBO track

PARTIAL-BIGINT-LIN
1st: Sat4j PB, 2nd: toysat, 3rd: wbo2sat, …

PARTIAL-SMALLINT-LIN
1st: SCIP spx, 2nd: clasp, 3rd: Sat4j PB, 4th: toysat, …

SOFT-BIGINT-LIN
1st: Sat4j PB, 2nd: toysat, 3rd: npSolver, …

SOFT-SMALLINT-LIN
1st: SCIP spx, 2nd: Sat4j PB, 3rd: clasp, 4th: toysat, …

My submission to
Max-SAT 2013

toysat: my own SAT-based solver

Simple incremental SAT-solving using linear search on
objective values

(since other features are not tuned up / tested enough)

scip-maxsat:

SCIP Optimization Suite 3.0.1 with default configuration

Simple conversion to 0-1 ILP.

glpk-maxsat

GLPK 4.45 with default configuration.

Simple conversion to 0-1 ILP.

Results of
Max-SAT 2013

This time, toysat did not perform well :(

Results for Complete Solvers

Winners:

MaxSAT Weighted Partial W. Partial
Random MaxSatz2013f ISAC+ ISAC+ Maxsatz2013f

ISAC+ Maxsatz2013f WMaxSatz+ ISAC+
WMaxSatz09 ckmax–small WMaxSatz09 WMaxSatz09

Crafted ISAC+ ISAC+ ISAC+ MaxHS
Maxsatz2013f Maxsatz2013f SCIP-maxsat ISAC+
WMaxSatz09 WMaxSatz+ ILP ILP

Industrial pMiFuMax — ISAC+ ISAC+
ISAC+ — QMaxSAT2-mt WPM1-2013
WPM1 — MSUnCore wMiFuMax

12/17

My opinion:
Benefits of submitting a solver to

competitions
You can benchmark your solver with others for FREE.

Benchmarking solvers is a hassle.
Requires lots of resources.
Not all solvers are open-source.

There are various sets of benchmarks, which
sometimes reveal subtle bugs in your solver.

PB12 revealed a subtle bug of toysat in conflict
analysis of pseudo boolean constraints.
Max-SAT 2013 revealed two bugs in SCIP/SoPlex.

Max-SAT 2013:
Bugs of SCIP

Organizers notified me that SCIP-maxsat produced wrong
results on some instances, and I resubmitted fixed version.
Case 1:

Running out of memory in SoPlex-1.7.1 LP solver leads
to declare non-optimal solution as optimal.
As an ad-hoc measure, I simply modified SoPlex to
terminate its process immediately after memory
allocation error w/o exception handling.

Case 2:
SCIP produced wrong optimal result on ONLY one
instance of the competition.
SCIP-2.1.1 worked correctly, but SCIP-3.0.1 did not!
Michael Winkler fixed the bug. Thanks!!

Towards Max-SAT
Evaluation 2014

My Submission Plan
Important dates

Submission deadline: April 11, 2014
Results of the evaluation: July 8-12, 2014

My plan
SCIP and FibreSCIP

If you do not submit by yourselves, I’ll submit instead.
I’d like to know a configuration that is better than default one.

toysat
I’m tuning its core implementation now, and I’ll adopt more
sophisticated algorithm than linear incremental SAT solving
(e.g. core-guided binary search).

Concluding Remarks

Interaction between
AI/CP and OR community

Now the two fields are overlapping, and interactions
between them are active/interesting research area.

Examples:

SCIP incorporates techniques from SAT/CP.

Cutting-plane proof systems in SAT-based PB
solvers.

SMT solvers use Simplex, cutting-plane, etc. as
“theory solvers” for arithmetic theory.

I hope this direction yields more fruitful results in
the future.

Related Problems

SAT

PBS PBO
Integer
Program

ming

Max
SAT

SMT

QBF

Finite
Model
Finding

Automatic
Theorem
Proving

RCF
(Real Closed

Field)

propositional logic to
first-order logic

M
ore

Arithm
etical

more like optimization

“Theorem
Proving”
field

“Computer Algebra”
field

This is a rough overview.
Ignore detailed positions

“Mathematical
Programming”
field

Focus of this talk.

Any Questions?

Reference

Reference
Implication Graph

Clause DB

Implication Graph

x1@1 x2@2
x3@3

x4@4

x5@4

x6@4

x7@4

x9@4

x8@4

⊥

ω1

ω1

ω2

ω3

ω3 ω4

ω5

ω5

ω6

ω6

• ω1: ¬x1 ∨ ¬x4 ∨ x5• ω2: ¬x4 ∨ x6• ω3: ¬x5 ∨ ¬x6 ∨ x7• ω4: ¬x7 ∨ x8• ω5: ¬x2 ∨ ¬x7 ∨ x9

• ω6: ¬x8 ∨ ¬x9• ω7: ¬x8 ∨ x9

Diagnose

ω6:
¬x8∨¬x9

ω4:
¬x7∨x8

¬x7∨¬x9 ω5:
¬x2∨¬x7∨x9

¬x2 ∨ ¬x7

Conflict
Side

Reason
Side

12年9月23日日曜日

How a CDCL SAT
Solver works

Masahiro Sakai
Twitter: @masahiro_sakai

12年9月23日日曜日

http://www.slideshare.net/sakai/how-a-cdcl-sat-
solver-works

http://www.slideshare.net/sakai/how-a-cdcl-sat-solver-works
http://www.slideshare.net/sakai/how-a-cdcl-sat-solver-works
http://www.slideshare.net/sakai/how-a-cdcl-sat-solver-works
http://www.slideshare.net/sakai/how-a-cdcl-sat-solver-works

Appendix:
About my icon

= +
Commutativity makes

category theorists happy!

