A Note on Freyd Dialgebra

Masahiro Sakai

August 28, 2006

1 Preliminaly

Definitions are omitted in the meantime. Please consult Freyd[1].

2 Main result

Theorem 1. Suppose T is a bifunctor on CPOcategory such that map $Tf'f : TAA \to TBB$ is strict for arbitrary $A, B, f : A \to B, f' : B \to A$. And suppose (F, ϕ) is a special invariant object. Then (F, ϕ, ϕ^{-1}) is a free T-dialgebra.

Proof. Let (A, ψ, ψ') be a *T*-dialgebra.

For the existence of dialgebra-map from (F, ϕ, ϕ^{-1}) to (A, ψ, ψ') , let $b_n : F \to A$ and $b'_n : A \to F$ be

$$(b_0, b'_0) = (\psi \circ \bot, \bot)$$

$$(b_{n+1}, b'_{n+1}) = (\psi \circ Tb'_n b_n \circ \phi^{-1})$$

$$, \phi \circ Tb_n b'_n \circ \psi')$$

. Then $\{(b_n, b'_n)\}_{n < \omega}$ forms accending chain and has the least upper bound $(b, b') = \bigsqcup_{n < \omega} (b_n, b'_n)$ which is a required dialgebras-map.

For the uniqueess. Suppose (x, x') : $(F, \phi, \phi^{-1}) \rightarrow (X, \psi, \psi')$ be another dialgebramap. Let $e_n : F \rightarrow F$ be accending chain of idempotents defined by $e_0 = \bot$, $e_{n+1} = \phi \circ$ $Te_n e_n \circ \phi^{-1}$.

We show that $x \circ e_n = b_n$ and $e_n \circ x' = b'_n$ by induction.

For the base case

$$x \circ e_0 = (\psi \circ Tx'x \circ \phi^{-1}) \circ \bot$$

= {isomorphism ϕ^{-1} is strict}
 $\psi \circ Tx'x \circ \bot$
= { $Tx'x$ is strict by assumption}
 $\psi \circ \bot$
= b_0

$$e_0 \circ x' = \bot \circ x$$
$$= \bot$$
$$= b'_0$$

For the induction step, assuming $x \circ e_n = b_n$ and $e_n \circ x' = b'_n$,

$$\begin{aligned} x \circ e_{n+1} &= (\psi \circ Tx'x \circ \phi^{-1}) \circ (\phi \circ Te_n e_n \circ \phi^{-1}) \\ &= \psi \circ T(e_n \circ x')(x \circ e_n) \circ \phi^{-1} \\ &= \psi \circ Tb'_n b_n \circ \phi^{-1} \\ &= b_{n+1} \end{aligned}$$

$$a_{n+1} \circ x' = (\phi \circ Te_n e_n \phi^{-1}) \circ (\phi \circ Txx' \circ \psi')$$
$$= \phi \circ T(x \circ e_n)(e_n \circ x') \circ \psi'$$
$$= \phi \circ Tb_n b'_n \circ \psi'$$
$$= b'_{n+1}$$

 e_r

By induction, $x \circ e_n = b_n$ and $e_n \circ x' = b'_n$ hold for all $n < \omega$.

Finally

$$(x, x') = (x \circ 1_F, 1_F \circ x')$$

$$= \{ (F, \phi) \text{ is a special invariant object } \}$$

$$(x \circ (\bigsqcup_{n < \omega} e_n), (\bigsqcup_{n < \omega} e_n) \circ x')$$

$$= \{ \text{composition is continuous} \}$$

$$(\bigsqcup_{n < \omega} (x \circ e_n), \bigsqcup_{n < \omega} (e_n \circ x'))$$

$$= \{ \text{pairing is continuous} \}$$

$$\bigsqcup_{n < \omega} (x \circ e_n, e_n \circ x')$$

$$= \bigsqcup_{n < \omega} (b_n, b'_n)$$

$$= (b, b')$$

Corollary 1. If T is a covariant functor on CPO-category and Tf is always strict, then (F, ϕ) is an initial algebra iff (F, ϕ^{-1}) is a final coalgebra.

References

 FREYD, P. J. 1990. Recursive Types Reduced to Inductive Types. In Proceedings 5th IEEE Annual Symp. on Logic in Computer Science, LICS'90 (Philadelphia, PA, USA, 4-7 June 1990). IEEE Computer Society Press, Los Alamitos, CA, 498-507. http://ieeexplore.ieee.org/xpl/ freeabs_all.jsp?arnumber=113772